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The Costs of Exascale Computing
won’t be Limited to Hardware

» The computational science & engineering community

relies extensively on large, long-lived codes
— O(100kK) lines typical, some O(1M) lines or more
— Lifespans often measured in decades

 Taking full advantage of exascale systems will require

significant changes, rewrites (1.5x)
— Exposing and managing parallelism, large node parallelism,
multilevel parallelism, accelerators (or not)
— Exposing and managing locality & data movement
— Energy and power constraints
— Limited memory, limited I/O (bandwidth & capacity)
— Resilience concerns exposed to programmer
— FLOPS free/data movement expensive, new algorithms?
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Reducing the Costs of Application
Software for Exascale

* The number of lines of code a programmer can write in a
fixed period of time is the same independent of the

language used (Corbato’s Law)

— Productivity and reliability depend on the length of the code, not
the language used

» Create a programming environment that better matches

the characteristics of exascale-era hardware
— Reduce the cost of mapping the code onto the hardware

— Today’s programming environments are based on hardware 30+
years old with 20 year old ideas bolted on

» Create a programming environment that better matches

the characteristics of the scientific problem being solved
— Reduce the cost of mapping the equations into code
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Domain-Specific Languages (DSLs)

* Programming language dedicated to a particular problem
domain, a particular problem representation technique,

and/or a particular solution technique

— Libraries may be used in a similar sense

— Example domains (from WOLFHPC11): PDEs, relativistic
spacetime, preconditioned iterative solvers, dense linear algebra,
quantum chemistry, stencil computations, OpenCL

 Benefits for scientist-programmers...

— Express computations at a higher level of abstraction — more
compact code

— Closer to the way they think about/publish problem

— Focused (constrained), natural environment makes errors less
likely, better error messages make debugging easier

— Let compiler worry about how to implement most efficiently for
target platform
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Sometimes the Equations Don’t
Even Look Like Equations!
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CCSD 7, Amplitude Equation
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CCSD 7, Amplitude Equation
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CCSD 7, Amplitude Equation
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Benefits of DSLs for Computers

* Preserve domain-specific information which would be lost
In translation to general purpose language

» Use domain-specific information to improve
Implementation

« Constrained (focused) environment may allow
more/better/easier optimizations

 Higher-level specification of computation gives compiler
more leeway in translating to target platform
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TCE Language
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in C[V,V,0,0], in D
out S[V,V,0,0])=
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TCE Optimizations

Algebraic Transformations

— Minimize operation count Tensor Expressions
(ICCS’05, ICCS’'06) '

L . > Algebraic S N |
Memory Minimization Transformations |
— Reduce intermediate storage |

via loop fusion (LCPC'03) |

Sequence of Matrix Products
Element-wise Matrix Operations
Element-wise Function Eval.

No sof'n fits disk Memory
« Space-Time Transformation Minimization Specification
— Trade-offs between storage
and recomputation (PLDI'02) No sol'n fits disk = Sol'n fits disk, not mem. Sol'n fits mem.
« Data Locality Optimization Spaceﬁme
— Optimize use of storage Trade-Offs R Locality Management g
hierarchy via tiling (ICS’01, ! [T
HiPC’03, IPDPS’04) Sofn fits mem. ‘

Data Dist./Comm. Optimization

imi Data Distributi
— Optimize parallel data layout ata Distribution

and Partitioning

(IPDPS’03)
* Integrated System Parallel Code
— (SC’02, Proc. IEEE 05) Fortran/C/...

OpenMP/MPI/Global Arrays
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Example: Single Term Optimizations

S(a,b,i,j) = ZA(a,c,i,k)B(b,e,f,l)C(d,f,j,k)D(c,d,e,l) 4N10 Ops
c,d,e, .k,

S(a,b.i, j) =Y Ala,c.i, k){Z C(d, f, j,k)[ZB(b, e, f,l)D(c,d,e,l)H
c.k d,f e,l

T1(b,c,d, ) = ZB(b e, £,0)D(c,d,e,l) 2N6 Ops

T2(b,c, j.k) = ZTl(b ¢,d, [)C(d, [, J,k) 2N6 Ops
d,f

S(a,b,i,j) = Y T2b,c, j, k) A(a,c,i,k) 2N Ops
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Example: Multi-Term Optimization
(Factorization)

. Unoptimized:

Ztc d ab cdﬁ

S; Vea T Ui Ve —  20°V* + 30°V* ops

" -
* Single-term optimization:
o P T

214 4 213
Z(Zt{’vﬁﬁ@“”’vﬁ - 20 VLOV +20°V7 ops

* Factorization:

re = Z (tl."s;’ + ufjd )vz’j —  20°V* + 0°V? ops
c.d k J

* Improved operation count over single-term optimization
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Lessons Learned from the TCE (1)

« DSLs can have a profound effect on productivity

— Implementation time of a new coupled cluster method reduced
from years to days (hours)

— Of ~4.5M lines of code in NWChem, approx. 3M+ have been
generated by a TCE prototype

* Rich opportunities for optimization
— Humans have a pretty good intuition for individual optimizations...
— But not so good with multiple optimizations (combinatorial
explosion)
— Computers are patient and thorough

» Specialized, time-consuming optimizations may be worth

the walit

— If your simulation requires a week or a month on an exascale
system, what's the harm in letting the compiler grind away for a
few hours to better optimize it?
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Lessons Learned from the TCE (2)

 Important to consider generality of optimizations, tools
— Easy for everything to end up domain specific
— Structure of tools can help with generality
— Requires long, careful discussions with domain experts

* Full language vs code generator to plug into some other
framework vs embedding in a general purpose language?

— TCE code relies on NWChem as part of “runtime”
— User has to write driver for iteration, convergence

* |t is a lot of work to produce a quality “deep” DSL!
— Designing and implementing core language
— Optimizations, multiple backends
— Creating or interfacing with infrastructure
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Toward a Sustainable Environment
for Creating Sustainable DSLs

« Some aspects of creating DSLs are always going to

require work
— Developing a common understanding between domain scientists
and computer scientists
— Doing a thoughtful analysis of the domain and designing a
language for it

« Some aspects we can make less work
— Developing the general purpose parts of the DSL
— Targeting different backends/platforms
— Developing/interfacing with the infrastructure
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Embedded DSLs - Leveraging
General Purpose Languages (GPLSs)

* The significance of a DSL is the domain-specific part

 But in most cases you need more “around” it
— Loops, conditionals, basic operations on basic data types, ...

— Building a complete language requires much more work than
focusing on a domain-specific core

 Solution: embed DSL in a general purpose language
— “Small” DSLs only make sense this way
— Can facilitate interfacing for “large” DSLs
— Reuse existing language tool chain & environment

— Possible disadvantage: makes it easier for programmer to go
“outside” of DSL
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Which Host Language?

* Rich type system, expressive, extensible
» OO and/or functional features, generic programming
 High performance, sufficiently familiar to programmers

- Exascale features: asynchrony, data distribution, scalable
& lightweight synchronization, locality control

* Fortran? C?

o C++7?

 PGAS? (Co-Array Fortran, UPC)
« Scala?

« APGAS? (Chapel, X10)
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APGAS Global View Makes for Natural

Presentation of
Parallel Data
Structures
Simple
TCE input
Chapel version

by Brad Chamberlain, Cray
(working code!)

3000;
100;

range V
range O

index a,b,c,d,e,f : V;
index i,3j,k,1 : O;
mlimit = 100GB;

procedure P(in A[V,V,0,0

1y
in Cc[V,Vv,0,0], in D[V,V,V,0],
out S[V,V,0,0])=
begin
Sla,b,1i,J] == sum|[ Ala,c,i,k] * Bl[b,e, f,1]
* Cld,f,3,k] * D[c,d,e, 1],
{c,d,e,f,k,1}]
end

config const V = 3000,
O = 100;
const DV = 1..V,
DO = 1..0;
const DVVOO = [DV, DV, DO, DO,
DVVVO = [DV, DV, DV, DOJ;
var A, C, S: [DVVOO] real,
B, D: [DVVVO] real;
forall (a, b, i, j) in DVVOO do
S(a,b,i,3) = + reduce [(c,d,e,f,k,1) in

(A(a,c,1,k) * B(b,e, £,1)

) ;

[DV, DV, DV, DV, DO, DO] ]
* C(d,£,3,k)

* D(cldlell));
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Creating DSLs without Creating New
Languages

* Modern languages are increasingly using libraries as an

intrinsic part of their design

— Separate core language elements from “conveniences” that can
be built on the core

— Examples: C stdlib; C++ STL, Boost; Java everything; ...
» Chapel supports...

— Generic programming

— Operator overloading

— Complex data structures

— User-defined data distributions
— User-defined (parallel) iterators

* Do we even need to extend the language when we have
such features available?
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Turning Libraries into Languages

* Libraries are commonly used to provide domain-specific
abstractions without the syntax

« But libraries are black boxes — immutable and opaque

« What if libraries carried with them (machine-actionable)
meta-information about their internals, how they could be

specialized or transformed?

— Like Telescoping Languages, but more

— Use DSLs for compiler transformations

— Extend X10 to utilize meta-information (written in X10)

 Allow compiler to reason about, optimize library-provided
operations

* Makes it easier for DSL developer to leverage libraries
into core infrastructure
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Language and Runtime Support for
Effective Exascale Execution (LARUS)

Proposal to 2012 X-Stack Research

- Oak Ridge National .
Laboratory °

- IBM

« Ohio State University .

 Pacific Northwest National
Laboratory .

* Rice University

 University of Houston .

 University of lllinois .

* Cray )

* NVIDIA
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APGAS languages as a base
Base language and DSL-related

capabilities

Compiler optimizations and
back-end code generation
Runtime scalability and
adaptivity

Resilience

Power and energy

Tools

Migration paths
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Summary

« Computational science and engineering applications will
constitute a significant part of the cost of exascale computing

* The exascale hardware environment will be notably different
than computational scientists have dealt with in the past

* Need to simplify task of mapping equations to code and code
to hardware

DSLs are one means to facilitate mapping equations to code
— Significant benefits, but non-negligible costs

Appropriate underlying GPL facilitates the second

Embedding in GPLs simplifies DSL development, leverages
existing tools and environment

Rich GPL may make DSLs unnecessary in some cases
« Annotated libraries to simplify DSL creation
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